Sommersymposium 2018 am 28. Juni 2018

» Biokohle für nachhaltige und ökologische Kreisläufe in der Europäischen Landwirtschaft«

Juan-Pablo Gutierrez Abteilung Biologische Verfahrenstechnik

Folie 1 © Fraunhofer UMSICHT

Agenda

- Fertilisers from secondary raw materials in the EU
- TCR process and Biochar
- Biochar modification for nutrient adsorption
- Agronomic performance of Biochar

Folie 2 © Fraunhofer UMSICHT

Sustainable fertilisers in Europe: Actual Situation

- Fertiliser demand will grow as global food production is expected to increase by 70% in 2050
- Mineral-based fertilisers (NPK) are mainly produced from fossil resources with serious drawbacks:
 - losses from 70-80% from farm to fork
 - high energy input for production
 - reliance on imports
 - eutrophication of water bodies
- Unexploited recovery potential of 9.6 Mt of N and 2.3 Mt of P

Nitrogen mineral input in EU15 Grizzeti et al 2007

Sustainable fertilisers in Europe: Our Vision

- Nutrient loop closed by 2050
- Acceleration of market introduction of fertilisers from secondary sources (sewage, manure, food waste) → common European regulation, certification pathways, technological mature
- Optimised nutrient distribution between EU regions \rightarrow new value chains
- Worldwide use of Biochar as soil amendment, nutrient carrier and stable carbon storage

Folie 4 © Fraunhofer UMSICHT

Sustainable fertilisers: EU Regulation and Certification

- New European Fertiliser Regulation (under revision)
 - 7 Product Function Categories (PFC) including organic fertilisers, inorganic fertilisers, soil improvers and bio-stimulants
 - Shortcomings: exclusion of bio-waste materials as well as garden and park waste; contradictions on definition of waste; limit of 20 mgPb/kg excludes bio-waste and compost
- Certification for new fertilising products
 - Standardisation of European fertilisers through CENs (*Comité Européen de Normalisation*)
 - Joint Research Centres (JRC) working groups on Struvite, Biochar and Ashes (STRUBIAS)
 - International initiative 4 per 1000 for carbon storage in the soil

TCR Process

TCR Process: Input materials

Folie 7 © Fraunhofer UMSICHT

TCR-Biochar properties

С	25.0 wt%	с	41.6 wt %	С	48.6 wt %	С	45.0 wt%
н	4.3 wt%	н	5.1 wt%	н	6.9 wt%	н	6.4 wt%
Ν	3.6 wt%	Ν	1.6 wt%	Ν	4.3 wt%	Ν	0.1 wt%
S	0.9 wt%	S	0.3 wt%	S	0.5 wt%	S	0.1 vvt%
O*	19.7 wt%	O *	31.6 wt%	O *	36.2 wt%	O*	47.8 wt%
Ash	46.5 wt %	Ash	8.7 wt %	Ash	3.5 wt%	Ash	0.6 wt%
LHV 8.1 MJ/kg		LHV 15.8 MJ/kg		LHV 20.5 MJ/kg		LHV 17.8 MJ/kg	
Sewage sludge		Digestate		Brewer's spent grain		Wood	
С	22.1 wt%	С	64.0 wt%	с	72.6 wt%	С	89.8 wt%
н	0.9 wt%	н	1.0 wt%	н	0.1 wt%	н	2.2 wt%
N	2.0 wt%	Ν	1.4 wt%	Ν	4.6 wt%	Ν	0.3 wt%
s	1.0 wt%	S	0.5 wt%	S	0.4 wt%	S	0.1 wt%
O*	0.0 wt%	0*	1.1 wt%	O*	4.8 wt%	O*	4.5 wt%
Ash	74.0 wt%	Ash	32.0 wt%	Ash	17.5 wt%	Ash	3.1 wt%
LHV 8.2 MJ/kg		LHV 23 MJ/kg		LHV 26 MJ/kg		LHV 34.4 MJ/kg	

TCR-Biochar modification for N adsorption

- Goal: adsorption of N-Ions (NO_3^- , NH_4^+) from the aqueous phase
 - Modifications for NH₄⁺ adsorption:
 - Acid activation HNO₃
 - Alkaline activation
 - Steam activation
 - Modifications for NO₃⁻ adsorption:
 - Thermal activation
 - Impregnation with transition metals (i.e. Zn, La)
 - Achieved adsorption performance
 - 1-2 mg/g for both ions NH₄⁺ and NO₃⁻

Agronomic performance of Biochar

 Pot trial equipment with capacity of 96 pots, light system, scaling system, collection of drain/leakage flows. Additional grinders and mixer unit for substrate preparation.

Folie 11 © Fraunhofer UMSICHT

Thank you for your attention!

Juan-Pablo Gutierrez Abteilung Biologische Verfahrenstechnik

Folie 12 © Fraunhofer UMSICHT