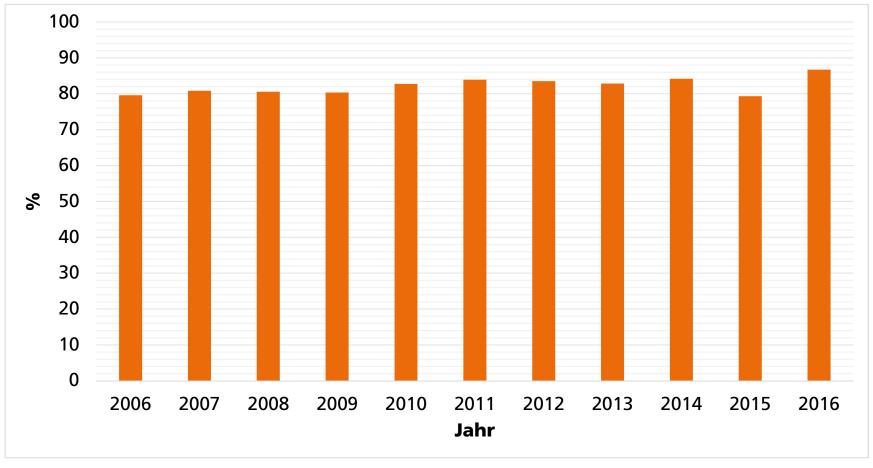
Herausforderungen bei der Rückgewinnung von Wertstoffen aus Elektroaltgeräten und Altfahrzeugen

DGAW Regionalveranstaltung

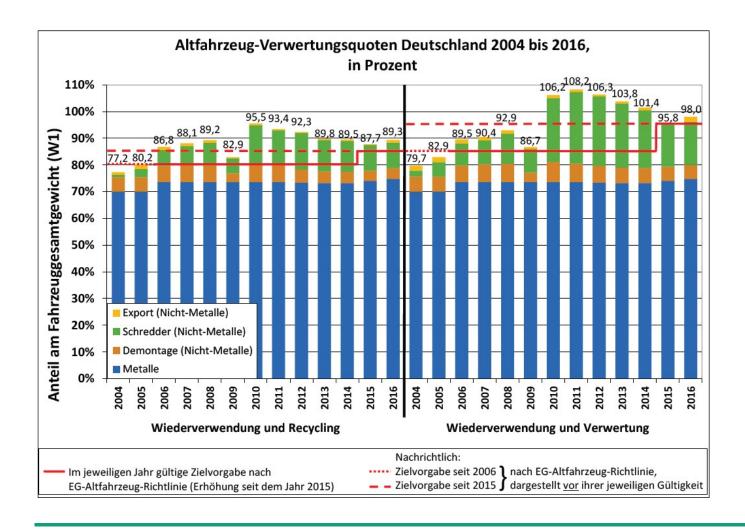
Recycling von Elektroaltgeräten und Altfahrzeugen

15. November 2018 Sulzbach-Rosenberg

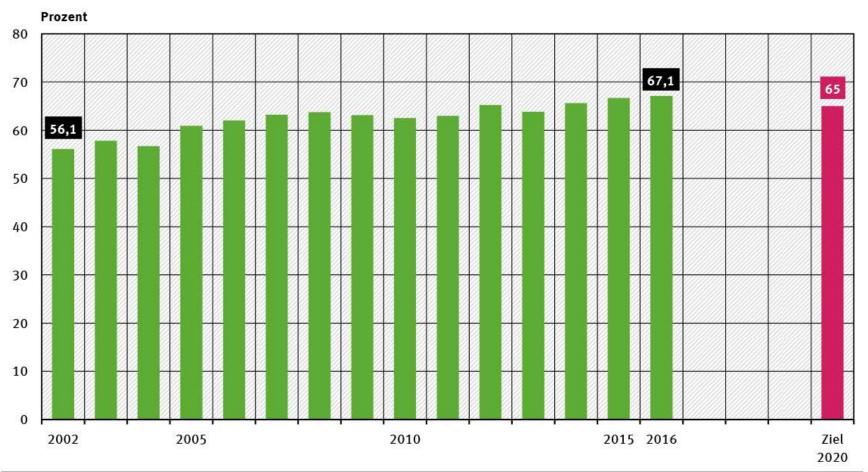
Matthias Franke



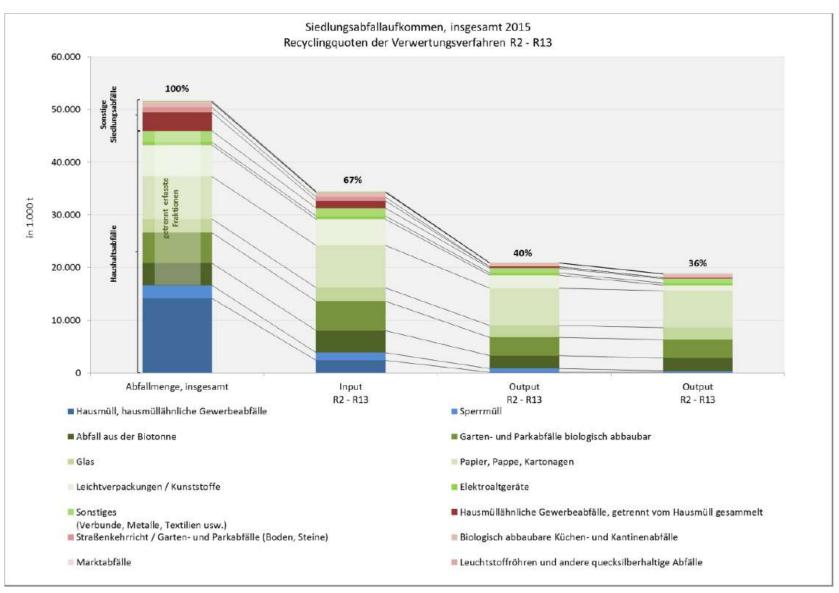
Einführung – Recycling und Rohstoffe


Elektroaltgeräte – Vorbereitung zur Wiederverwendung und Recycling

Quelle: UBA 2017

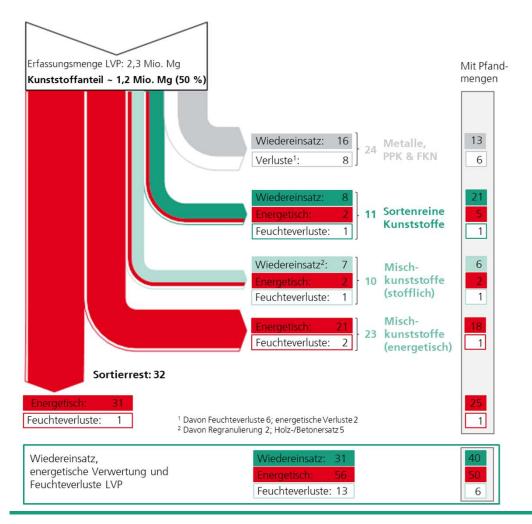

Altfahrzeuge – Verwertungsquoten 2004 bis 2016

Quelle: BMUB 2018


Siedlungsabfall – Stofflich verwerteter Anteil

^{*} Das Statistische Bundesamt verwendet bei der Abfall-Kategorie "Elektroaltgeräte" eine vereinfachte Definition für die Berechnung der Recycling-Quote, die zu einer Quote von 100 % führt. Eine Erhebung nach dem Elektrogesetz führt zu anderen Ergebnissen.

Quelle: Statistisches Bundesamt, Abfallbilanzen, verschiedene Jahrgänge

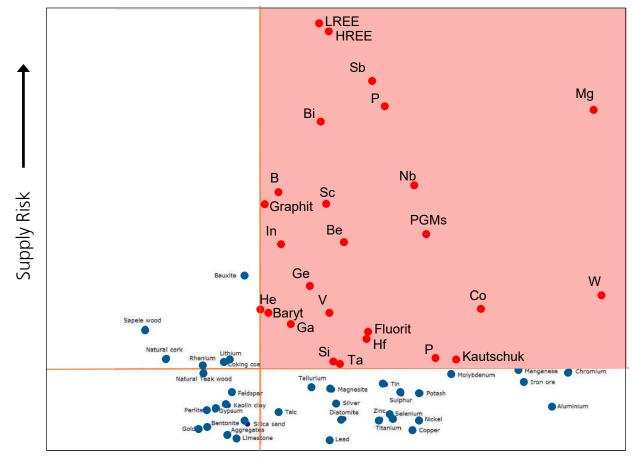


Quelle: Obermeier & Lehmann 2018

Beispiel Leichtverpackungen

Quelle: UBA 2011 & 2012

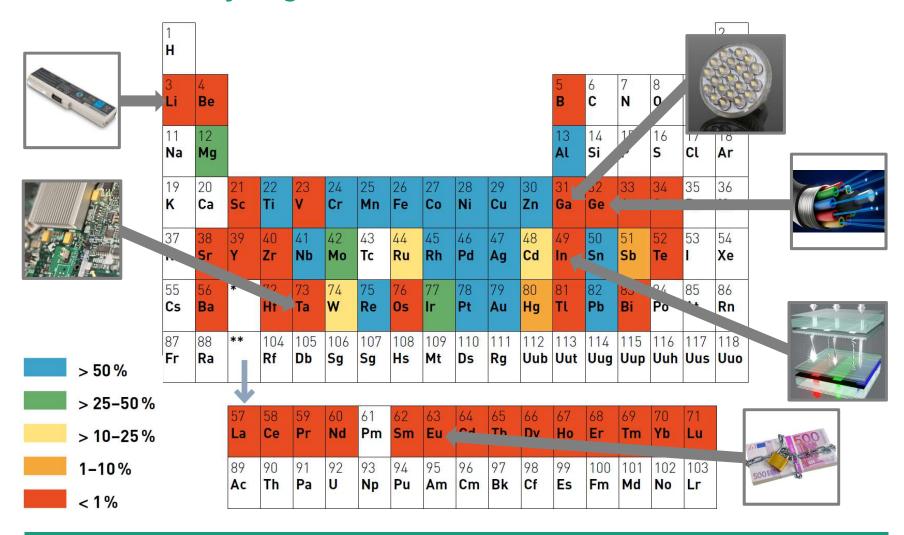
Fazit


(Über-)erfüllung aller gesetzlichen Quotenvorgaben

Aber:

- quantitative Quoten
- qualitative Aspekte unberücksichtigt
- Ermittlungsmethode der Quoten ändert sich
- Keine Berücksichtigung der Kritikalität von Rohstoffen
- Keine Berücksichtigung ökologisch-sozialer Aspekte
- Zunehmende Komplexität von Produkten durch
 - Leichtbau
 - Miniaturisierung
 - Multimaterialverbunde

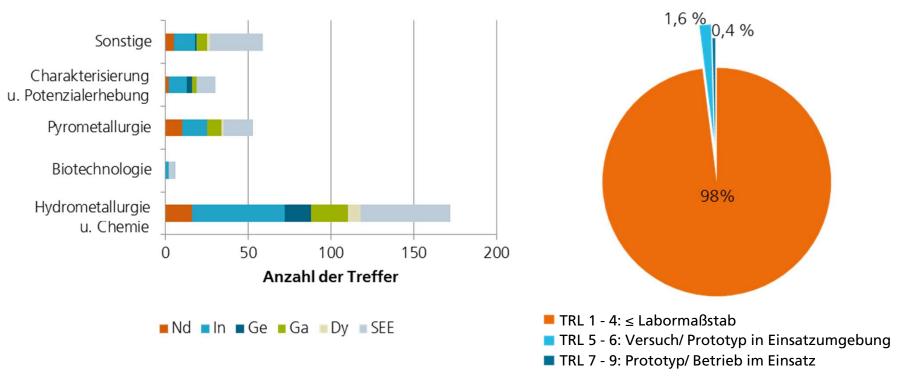
Kritische Rohstoffe für die EU



Economic Importance _____

Quelle: Europäische Kommission 2017

Globale EoL-Recyclingraten


Herausforderungen entlang der Prozesskette

			Magnesium	fer	el	er.	7	Palladium	Ruthenium	Antimon	ium	Germanium	un	alt	ene Erden	al	Beryllium	<u>.</u> .	Wolfram		
Quelle: UNEP 2013	Eisen	Alu	Mag	Kupfer	Nickel	Silber	Gold	Palla	Ruth	Anti	Gallium	Gerr	Indium	Kobalt	Seltene	Tantal	Bery	Tellur	Wol	Niob	Zinn
Erfassung	•						•	•		•			•	•		•	•	•		•	
Sortiertechnik				0	0	0	0	0	0	0	0	0	0	0	•	0	•	0		•	0
Trenntechnik	0		0			•	•			0	0	0	0	0	0	0	0	0	0	0	0
Detektion	0	0	0							0						•	0				
Abtrennung	0	0	0		0			•		0			•	•	•	•	0	•		•	
Aufkonzentrierung	0	0	0	0	0	•	•	•		•	•	•	•	•		•	0	•	•	•	0
Recycling	•	•	•	•	•	•	•	•								•	•		•	•	
 nicht relevant Stand der Technik Existent, optimierbar unbekannt 																					

Innovationen und Marktreife

Anzahl Veröffentlichungen nach Element und **Verfahren** (n=338)

Anteil Veröffentlichungen nach **technologischem Reifegrad** von Forschungsprojekten

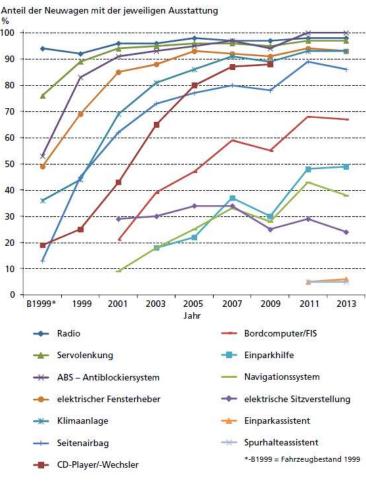
Auswertung ScienceDirect, eigene Darstellung [Fraunhofer UMSICHT 2015]

Recycling von Elektroaltgeräten und Altfahrzeugen

Herausforderungen

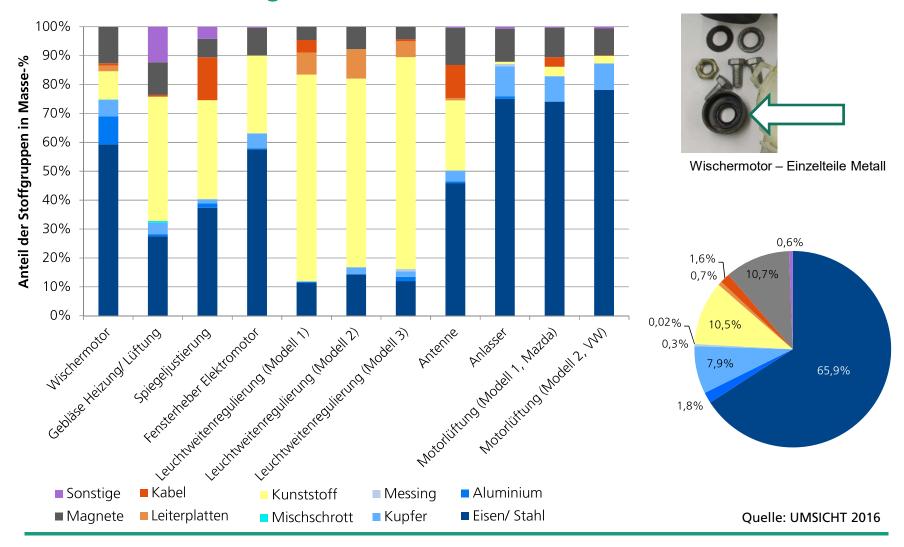
Altfahrzeuge

- Statistische Lücke Fahrzeugverbleibe
- Hochwertige Verwertung von Wertstoffen in Shredderrückständen
- Rückgewinnung Edel- u. Sondermetalle aus Fahrzeugelektronik, Elektromotoren, Batterien
- Hochwertige Verwertung neuer Werkstoffe (GFK, CFK, Speziallegierungen)


Elektroaltgeräte

- Eindämmung illegaler Exporte
- Steigerung der Sammelmengen
- Qualitative Verbesserung des Recyclings (Edel- u. Sondermetalle)

Fahrzeugelektronik und Elektromotoren

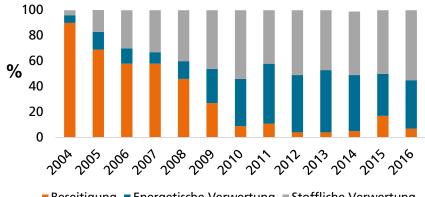

- Steigender Ausstattungsgrad moderner Fahrzeuge
- Steigender Anteil an strategischen / kritischen Rohstoffen
- Keine gezielte Rückgewinnung gering konzentrierter kritischer Rohstoffe in Demontageprozessen
- Verschleppung wertvoller Elemente in die Shredderleichtfraktion
- Relevante Verluste von Edel- u.
 Sondermetallen über die SLF

Quelle: Kohlmeyer et al. 2015

Manuelle Demontage

Manuelle Demontage

- Hoher manueller
 Demontageaufwand für
 Komponenten
- Hohe Demontagekosten
- Relativ geringe
 Komponentenerlöse bei stofflicher Verwertung
- Automatisierung der Komponentenentnahme zur Steigerung der Wirtschaftlichkeit


Segment	Gruppe	Komponente	Gewicht	Demon	tagezeit	Kosten tagel	Kompo- nenten- erlös	
				Komp	m. Stör	Komp	m. Stör	3
	6 57		kg	min	min	EUR	EUR	EUR
Kleinwagen	è ai	Servomotor	5,25	0,60	3,40	0,51	2,14	1,94
Untere Mittelkl.	2	Scrvomotor	2,20	1,45	4,68	0,91	2,80	0,81
Großraumlim.		Anlasser	3,95	3,50	8,24	2,16	4,93	2,33
Kleinstwagen	Motoron	Ailidasci	3,50	0,40	4,43	0,34	2,69	2,07
Kleinstwagen	Motoren	Lichtmaschine	5,35	1,50	7,65	1,04	4,62	3,16
Unt. Mittelkl. II	er e	Elettinasettine	6,20	3,75	5,63	2,37	3,47	3,66
Geländew. Med		Sitzverstellung	0,47	0,75	0,75	0,45	0,45	0,17
Kleinwagen		Scheibenwischermotor	2,25	0,60	4,10	0,42	2,46	0,83
Geländew. G	Bild-	Kombiinstrument	1,60	1,30	1,30	0,81	0,81	0,42
Unt. Mittelkl. II	schirme	Kombinisadinen	0,90	0,30	2,30	0,20	1,37	0,23
Mini Van		Motorsteuerung	0,85	0,60	1,12	0,38	0,68	1,08
Untere Mittelkl.		Motorsteaching	0,55	0,40	1,21	0,25	0,72	0,70
Geländew. Med		Getriebesteuerung	5,70	2,30	2,30	1,51	1,51	7,24
Kleinstwagen	Steuer-	detrebestederang	0,55	0,90	1,21	0,54	0,72	0,70
Kleinstwagen	geräte	Fahrtsteuerung	2,00	1,40	2,52	0,88	1,53	1,40
Mini Van		Airbagsteuerung	0,30	1,35	2,05	0,80	1,20	0,38
Geländew. G	tr 3. 1	Fahrwerksteuerung	0,40	7,88	7,88	4,61	4,61	0,51
Großraumlim.	*	rain Werkstederding	0,40	0,25	0,25	0,16	0,16	0,51
Geländew. G		Infotainment	1,90	2,73	2,73	1,65	1,65	2,41
Geländew. G		Abstandssensor, Radar	0,38	0,20	1,40	0,13	0,83	0,48
Obere Mittelkl.	Sensoren	Austanussenson, Naudi	0,29	0,43	1,63	0,26	0,96	0,37
Kleinwagen	8	Sauerstoffsensor	0,07	0,30	0,37	0,18	0,22	0,46

Quelle: Kohlmeyer et al. 2015

Shredderleichtfraktion

- Hohe Edel- u. Sondermetallkonzentrationen in Elektronikbauteilen
- tlw. hohe Wiederfindung von Elementen in der Shredderleichtfraktion (Abb. 2)
- Metallverluste über
 Shredderleichtfraktion (Abb. 1)
- Hohe Anteile an Kunststoffen, Elastomeren und Glas
- → Demontage(pflicht)?
 - Kabelstränge, Motoren, Steuergeräte
 - Glas und Kunststoffteile
- → Optimierte Post-Shredderprozesse

■Beseitigung ■ Energetische Verwertung ■ Stoffliche Verwertung

Abb. 1: Entsorgungswege Shredderleichtfraktion aus Shredderanlagen mit Restkarossenverwertung in Deutschland (Destatis 2018)

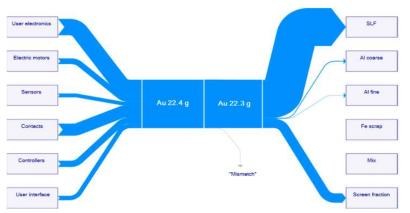
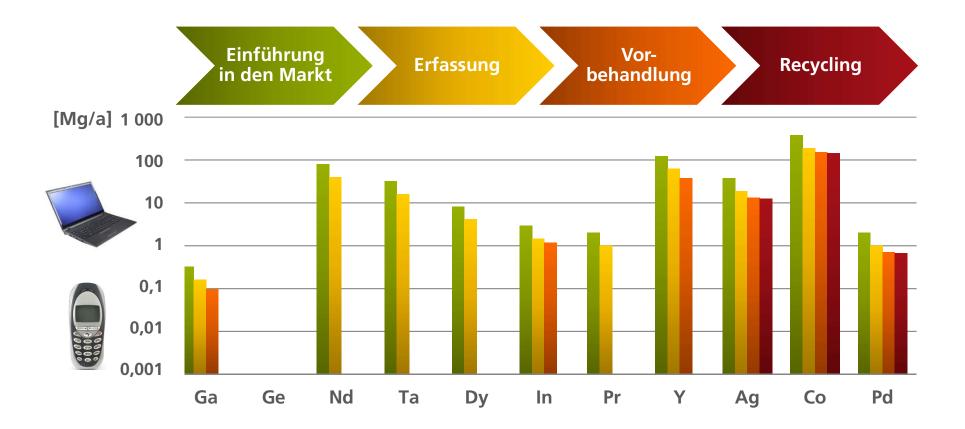


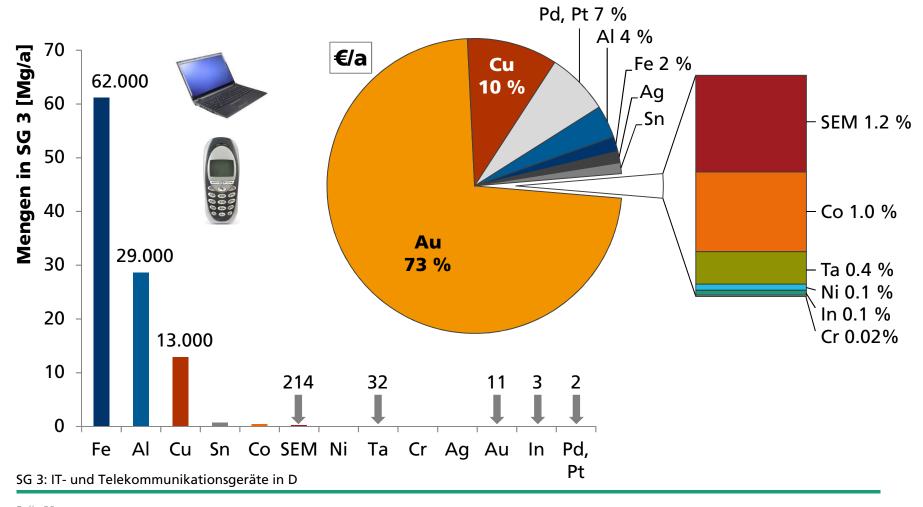
Abb. 2) Herkunft und Verteilung von Gold aus Elektronikkomponenten in den Post-Shredderfraktionen (Widmer et al. 2015)



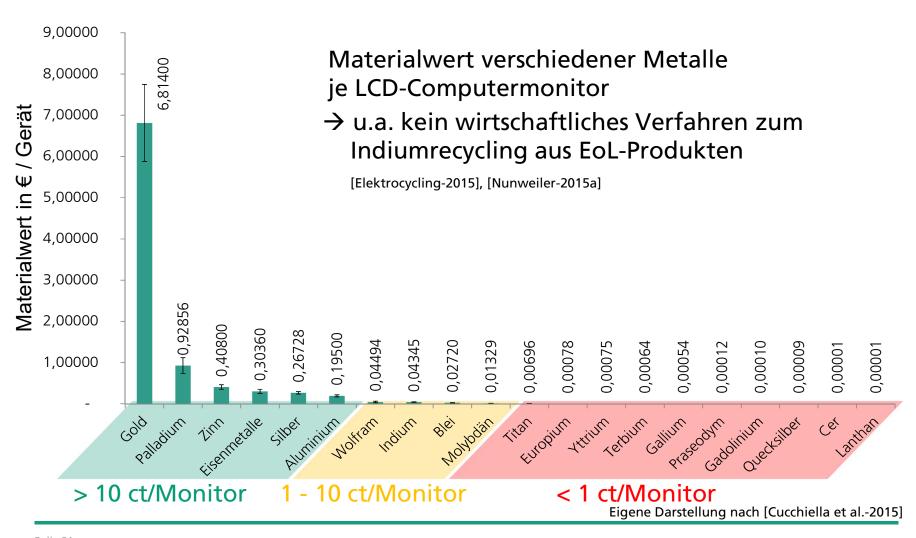
Elemente in einem Mobiltelefon

1 H	2																2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 N a	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T l	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Sg	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uug	115 Uup	116 Uuh	117 Uus	118 Uuo
		4	/														
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Materialverluste entlang der Wertschöpfungskette

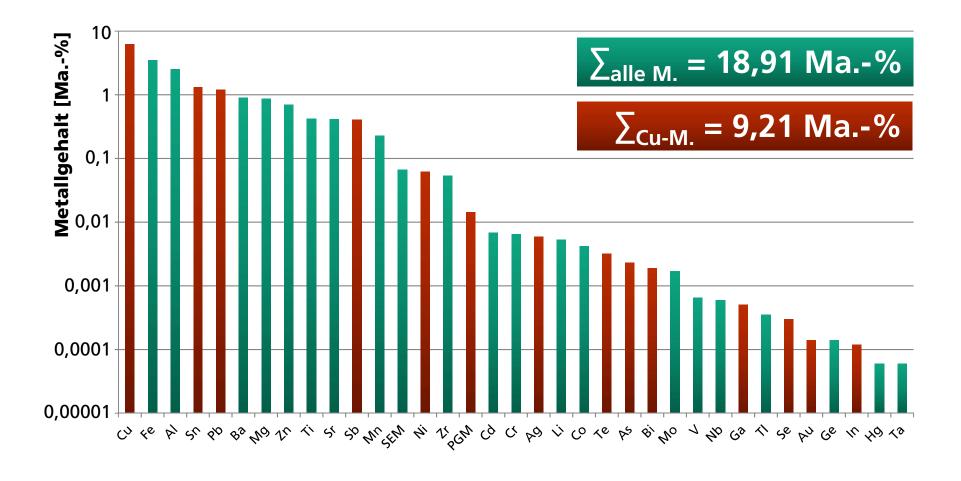


Basis: Sammelgruppe 3 (IT-Equipment)


Quellen: Sander et al. 2012; Buchert et al. 2012

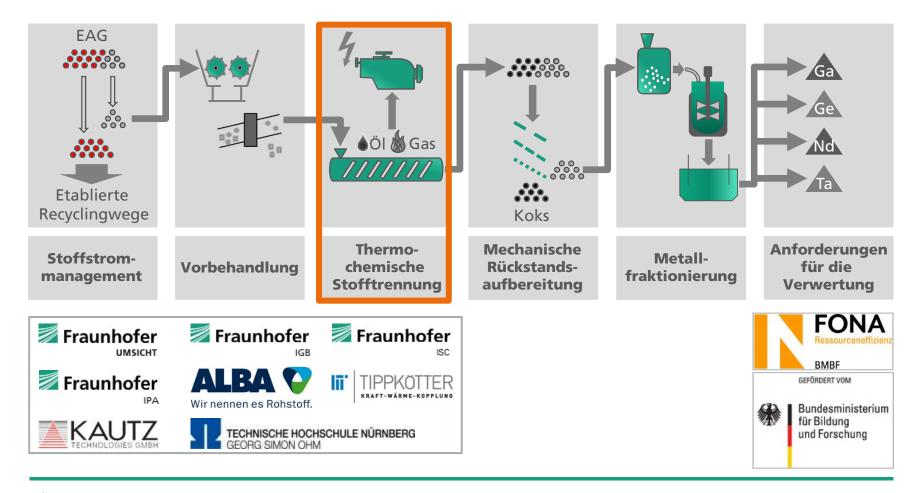
Kritische Metalle & Wertschöpfung

Ökonomische Randbedingungen

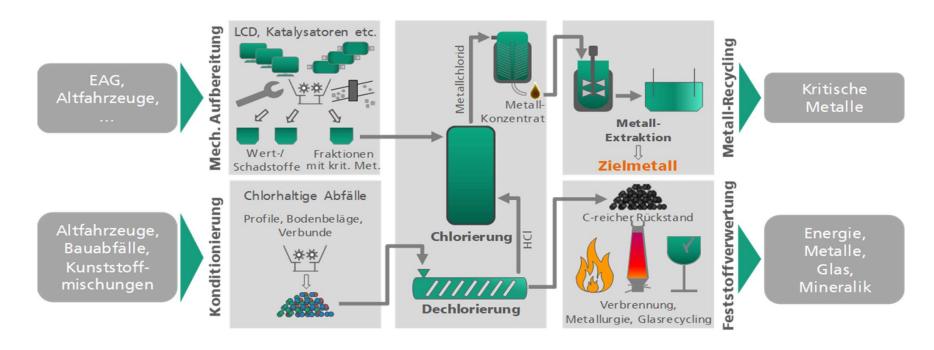


Mechanische Aufbereitung von EAG

Potentiale in Shredder-Rückständen


Potentiale in Shredder-Rückständen (Deutschland)

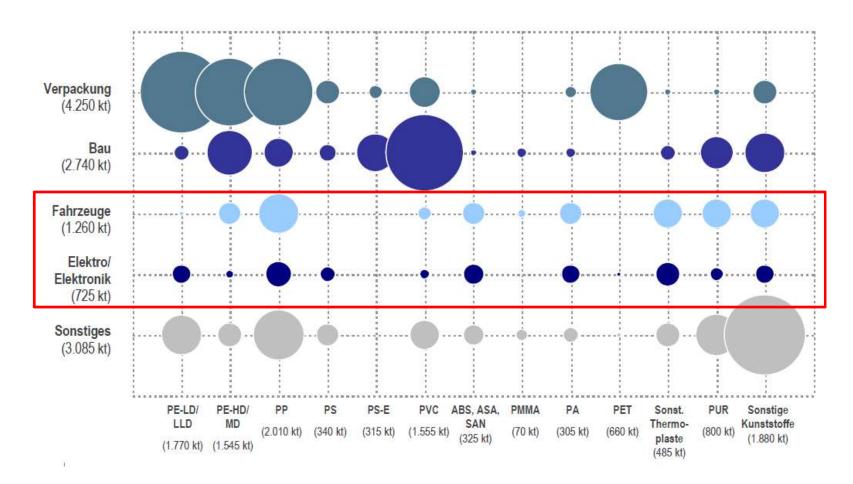
References: ¹scheideanstalt.de; ²Buchert et al. 2012; ³Hagelüken et al. 2005; ⁴Monolithos 2015


BMBF-Projekt gagendta⁺

Projektansatz – CI-Plattform

Konsortium:

Gerhard Rubenbauer



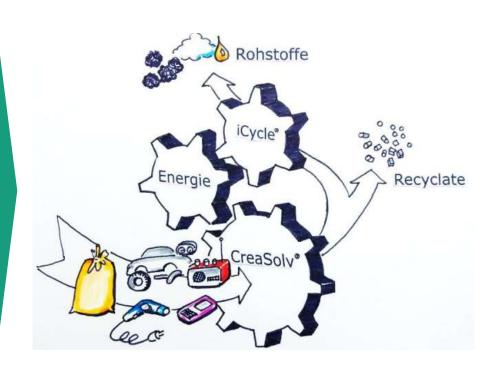
Herausforderungen – Elektroaltgeräte und Altfahrzeuge

Kunststoffarten in EAG und Altfahrzeugen

Quelle: Consultic 2016

Herausforderungen Elektroaltgeräte und Altfahrzeuge

Fraunhofer-Projekt "kunstwerk"


Leichtverpackungen

Elektroaltgeräte

Shredder-leichtfraktion

Beteiligte Institute: Fraunhofer IVV & Fraunhofer UMSICHT Sulzbach-Rosenberg

Herausforderungen bei der Rückgewinnung von Wertstoffen aus Elektroaltgeräten und Altfahrzeugen

DGAW Regionalveranstaltung

Recycling von Elektroaltgeräten und Altfahrzeugen

15. November 2018 Sulzbach-Rosenberg

Vielen Dank für Ihre Aufmerksamkeit!

Matthias Franke

